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Abstract: Substituted A2-butenolides may be prepared from furan equivalents by reglospeclfic 
metallation, sulfenylation and/or silylation, removal of the sulfur group and peracid oxidation. 

Unsaturated five-membered lactones commonly occur as structural elements of natural products. 

Strategies for the preparation of the a-methylene lactones have emerged from many laboratories3. 

A2-Butenolides have received less attention4. Recently, however, the discovery of a variety of 

blo-active butenolide substituted compounds’ has piqued interest in these lactones, and a number 

of new methods have been developed and used for their construction 6,7 . 

In our work on the synthesis of butenolide containing diterpenoids we sought a convenient, 

accessible, and easily transformable synthon for a A2-butenolide. The most likely candidate 

appeared to be a furan unit. Our strategy (shown in the retrosynthetic scheme) for the conversion 

of furans to A2-butenolides la and lb was based on the recent work of Kuwajima and Urabe 839 . - - 

These authors showed that A3-butenolides are produced by the action of peracetic acid on S-alkyl- 

2-trimethylsilylfurans. If this process were applicable to the corresponding 3- and 4-alkyl-2- 

trimethylsilylfurans 2a and 2, and if the latter compounds could be readily prepared - then a 

general solution to the problem of constructing the A‘-compounds was at hand. 
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The requisite furans, for the projected sequence, alcohols 3 and 5, were prepared by the method - 

of Graf and KZInig 
10a 

as recently modified by Liotta et al lob . As indicated in Scheme I, either 

furan-3-methanol,?, or its tert-butyldimethylsilyl ether 2 may be regiospecifically lithiated 11 

and substituted at the u-position ortho to the oxyalkyl group. Thus 5 on lithlation and silyla- 

tion yields 2 in 86% yield. The isomeric a-trimethylsilyl compound 1 was also obtained by appli- 

cation of the protection/deprotectlon sequence of Cohen and Nolan 12 . Sulfenylation of the dili- 

thio- derivative of 3 yielded 2, and the latter was converted into its silyl derivative 9 - -* A 
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Scheme I 

a 
Reagents and Conditions 
3 - 5: TBDMScl.(leq)/imidazole(2.5eq)/DMF/rt/l2h 
5 -6: BuLi(leq)/ather/rt/Sh: TMsCl(leq)/o*/46h 
6 +l9: aOOAc(4eqj/NaOAc(4eq)/cH2C12/7*/3.5h 
3-m 8: BuLi(2eq)/THF/-7S0/2h-.0*/lh: PhSSPh(leq)/0°/12h 
8 - 9: (3--c 5) 
9 -10: (5-c 6) 
10-7: Raney nickel/ethanol/reflux/6h 
7-20: (6 -19) 
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Scheme II 
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Reagents and conditions 
4 -13: BuLi(2eq)/THF/-78'/lh/OD/2h: TMscl/ 

(2.5eq)/O"/12h 
MeOH/HCl/rt/lh 
(3 - 5) 
(6 -19) 
i3 - 8) 
(4 -13) 
(13-14) 
Raney nickel/ethanol/reflw/l6h 
(3 - 5) 
(6-19) 
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second lithiation, C-silylation, and Raney-nickel 

turn. 

induced desulfurization afforded 10 and 7 in -- 

The tert-butyldimethylsilyl ether of 4 could not be metallated regiospecifically. Treatment 

of this ether with butyl lithium/trimethylsilyl chloride gave an approximately 1:l mixture of 

11 and 12 - -. These isomers though separable were then prepared individually by the lengthier but 

specific routes shown in Scheme II. Thus 4 gave silyl furan 13 with butyl lithium/TMSCl, and to - 

parallel the Scheme I series we converted 13 into alcohols, thence to silyl ether 11. Appli- - - 

cation of the sulfenylation 

2-trimethylsilylfuran 12. - 

The preparation of the 

exceeding 85% were obtained 

obtained when the peracetic 

Thus treatment of 5, 7_, 2, 

route to i gave, via intermediates 2, 16, 11, and 2, the isomeric - 

four silylfurans 5, 1, 11, and 12 are efficient processes. Yields - 

for all steps. High yields of the desired butenolides were also 

acid oxidation procedure 
8 

was applied to their furan equivalents. 

and 12 with peracetic acid at 7" - C for 3.5 h gave butenolides 19, 

88% yield. 

20, 

2, and 2, respectively; only 20 being obtained in less than _ 

We have also shown that a functionally substituted furan 

carbon-chain extension. Thus, we prepared bromide 23 
13 

from - 

malonic ester to afford fury1 diester 24 - (70%). Oxidation of 

OH 

may be prepared and utilized for 

18 (80%) and reacted it with - 

14 
24 gave A2-butenolide 25 (78%) . - 
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These results in conjunction with earlier developments in the synthesis of 3-alkylfurans 

demonstrate that substituted furan rings may serve as useful synthetic equivalents of both 2- and 

3-alkyl A‘-butenolides. The application of these results to the synthesis of representative 

natural products will be described in forthcoming publications. 
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2: 6 7.5(d, 1H. J=3Hz), 7.2(m,5H), 6.55(d, lH, J=3Hz), 4.68(s,2H), 0.95(s,9H), 0.0 (s,6H). 

I: 6 7.52(s,lH), 6.57(s,lH), 4.60(s,2H), 0.95(s,9H), O,lO(s,6H). 

19: 6 7.33(m,lH), 4.28(m,2H), 4.45(m,2H), 0.95(s,9H), O.lO(s,6H): urnax cm-'(CHC13). - 

20: 6 5.92(m,lH), 4.88(d,2H,J=lHz), 4.63(d,2H,J=lHz), 0.95(s,9H), O.lO(s.6H): urnax - 

cm-l(CHC13). 

11: 6 7.50(d,lH,J=Hz), 6.25(d,lH,J=lHz), 3.75(t,2H,J=7Hz), 2.70(t,2H,J=7Hz), 0.90(s,9H), - 

0.30(s,9H), O.OO(s,6H). 

17: 6 7.20(m,5H). 6.68(s,lH), 3.80(t,2H,J=7Hz), 2.74(t,2H.J=7Hz), 2.25(br.s.,lH), 6 0.30 - 

(s,9H). 

12: 6 7.50(s,lH), 6.55(s,lH), 3.78(t,2H,J=7Hz), 2.70(t,2H,J=7Hz), O.gO(s,gH), 0.30(s,9H), - 

O.lO(s,6H). 

21: 6 7.27(m,lH), 4.80(m,2H), 3.8(t,2H,J=6H.z), 2.4(t,d,2H,J=6Hz,lHz), 0.95(s,9H), 0.10 - 

(s,6H): urnax 1750 cm-l (CHC1)3. 

22: 6 5.90(m,lH), 4.82(m,2H). 3.85(t,d,2H,J=6Hz,lHz). 2.6(t.2H.J=6Hz), 0.95(s,9H), 0.10 - 

(s,6H): urnax 1750 cm-1(CHC13). 
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